
   
 

   
 

Abstract Section:  
Currently, there are 26.2 million COVID-19 cases in the US due to people taking lower 

precautions to reduce transmission at public venues. This project aims to create a tool that 

provides individuals with information to make a responsible decision about visiting an 

establishment to prevent unnecessary SARS-CoV-2 cases. A probabilistic model that predicts 

the risk of an individual contracting COVID-19 (transmission risk) during a visit to an 

establishment was created. This model was integrated into a web app built using the StreamLit 

framework in Python3.8. It acquired data through parsing COVID-19 databases and obtaining 

venue-specific data through user-inputs. The transmission risk model worked by multiplying the 

likelihood an individual will encounter a virus carrier (exposure risk) and the risk the individual 

will contract the virus if one carrier is present (contract risk). The exposure risk model was 

tested through the Spearman’s Rank Correlation by calculating the correlation between the 

model’s risk prediction for 200 random counties to new cases two weeks later of the 

aforementioned counties. Contract risk was tested using four different scenarios. Transmission 

risk was tested using these four scenarios factoring three counties with ranging incidence rates. 

The exposure risk model averaged a Spearman Rank correlation of 0.81, placing it in the “very 

strong” category. The contract and transmission risk provided sensible predictions for the 

scenarios provided. This model can be easily expanded to other databases and adapted to high-

incidence countries. Since virus-specific aspects can apply to other illnesses, the model can be 

adjusted easily for other viruses. 

Introduction:  
A pandemic is an international disease outbreak that affects millions of people over a 

vast geographic area. In modern society, extensive global travel and trade can exacerbate the 



   
 

   
 

effects of a pandemic. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also 

known as coronavirus disease of 2019 (COVID-19), originated from a patient from Wuhan, 

China, in December of 2019. The virus then spread rapidly around the globe, eventually 

reaching the United States in January. Although cases in the United States were stagnant for 

two months, in mid-March of 2020, cases increased swiftly at densely populated localities along 

the east and west coasts of the United States. Due to effective social distancing measures over 

five months, these areas had a comparatively low rise in new cases than the reopening months. 

Assuming the peak had already passed, the United States took on the daunting challenge of 

reopening the country and transitioning back to “normal’ life in the autumn of 2020. Cases 

began to sky-rocket after many people started attending public establishments, such as malls, 

grocery stores, and recreational events.  

According to public health officials, the reopening of socially interactive venues, such as 

bars and theaters, and relaxation of social distancing protocol, allowing more people to attend 

a venue were significant factors for the spike seen (Gamio, 2020). The rise in cases leads to a 

multitude of detrimental effects for the United States and its denizens. Most notably, there is a 

clear correlation between COVID-19 cases and deaths in a community. With a mortality rate of 

about 70.07 to 100,000 people, the death toll has risen to 417,000 people as of January 2021 

(Mortality Analyses, 2020). Deaths are sobering for the entire country and affect minorities, 

elders, and people with compromised immune systems to worst (Cooper & Williams, 2020). On 

top of that, a rise in cases leads to increased hospitalizations, straining the community’s health 

care infrastructure and hindering them from treating COVID-19 patients and others in need of 

medical assistance. Growth in cases affects the economy on a national and personal level due 



   
 

   
 

to travel and import restrictions implemented to reduce transmission of the virus (Oh, 2020). 

The low economy led to a recession and a loss of over 30 million jobs (insert source). Overall, 

the pandemic has disrupted the lives of many individuals medically, socially, and financially. 

Hence, people must be cautious and make the right decision when deciding to visit an 

establishment.  

There are currently two types of public tools to make decisions: COVID-19 dashboards 

and risk estimator tools. Like the Johns Hopkins COVID-19 dashboards, dashboards are great 

sources to visualize trends in various geographical areas. They allow users to understand the 

pandemic’s current state by viewing how incidence has changed over time. This type of tool is 

also accurate since they source their data from trusted databases, such as the (insert a formal 

name for JH database) and New York Times. Dashboards simply provide users with general data 

without analysis. They are not best suited to provide users with a risk associated with visiting a 

venue. Risk estimator tools, such as the Community Social Risk Estimator (CSORE) and COVID-19 

Event Risk Assessment Planning Tool, are web apps that use data-driven probabilistic models, 

COVID-19 incidence data, and venue population to provide users with the probability that they 

will encounter a carrier during their visit the establishment. That likelihood is known as 

exposure risk, and it allows individuals to make a more informed decision through a direct 

metric. However, they are not entirely accurate since they do not account for the virus’s 

transmissivity and the population density inside the establishment.  

To eliminate unnecessary cases during the country’s reopening period, individuals need 

to make decisions about visiting an establishment regarding the risk it poses to themselves. 

Many tools provide people with an estimated risk; however, they do not include the 



   
 

   
 

transmissive properties of COVID-19, which is an essential aspect when predicting risk. This 

project aims to implement a web app that utilizes a data-driven transmission risk model to give 

users a better understanding of the risk associated with visiting an establishment. With this 

knowledge, individuals in every community can take the right steps towards lowering COVID-19 

cases and avoid the detriments of high COVID-19 incidence rates.  

Methods and Materials:  
A probabilistic model that predicts transmission risk was created and tested on Python3.8 using 

the PyCharm IDE. Additionally, results from testing were stored on an MS Excel Workbook. 

Multiple Python Modules were used during the creation and testing of the probabilistic model. 

The Pandas module was used to parse data from databases. The Datetime module was used to 

get the current date and travel between different dates. The inbuilt Python Math module was 

used to perform advanced calculations. During the testing process, the Barnum module was 

used to create 200 random counties. Matplotlib was used to create graphs based on the data 

collected. The SciPy module was used to calculate the Spearman’s Rank Correlation. The 

probabilistic model initially obtained data from the NY-Times COVID-19 database for COVID-19 

related information but switched to the COVID-19 Data Repository by the Center for Systems 

Science and Engineering (CSSE) at Johns Hopkins University. County population data was 

initially acquired from the United States’ Census Bureau’s 2010 Census but switched United 

States’ Census Bureau’s 2019 population predictions. A 2018 US Zip Code to County State to 

FIPS Look Up data set was used to covert zip codes to FIPS codes.  

 



   
 

   
 

Transmission Risk Model:  
The transmission risk model works using a simple equation that has three parts (Sun et 

al., 2020):  

𝑅!"#$%&'%%'($ =
𝑅)*+(%,") 	× 𝑅-($!"#-!

𝐼'&&,$'!.
 

 The model predicts the likelihood that an individual would be infected with Cov-SARs-2 

(𝑅!"#$%&'%%'($) when visiting a venue.  𝑅)*+(%,")  is the probability that one or more carriers of 

the virus would be present in an establishment during the visit. Essentially, 𝑅)*+(%,")  models 

an individual’s exposure to a carrier of the virus in a community. This part of the model is 

affected by factors such as incidence rates and the number of people at the venue. 𝑅-($!"#-! is 

the likelihood that an individual contracts the virus after interacting with a carrier. This value 

will be low the more protection – face mask, air purifiers, etc. – that the individual and carrier 

use (Sun et al., 2020 ).  Finally, 𝐼'&&,$'!.  represent the individual’s ability to be immune to a 

virus. It is known that previously infected individuals develop anti-bodies and provides the 

individual with a short-term period of immunity; however, estimates for this period vary greatly 

from one week to six weeks (“Immunity passports” in the context of COVID-19., n.d; Lumley et 

al., 2020, p. 9). In addition, lower incidence rates among children suggests their immune system 

offers some immunity (Center for Disease Control and Prevention, 2020). More definitive 

research is needed in this area which is why 𝐼'&&,$'!. is assumed to be same for every 

individual in this model. To make this model, 𝑅)*+(%,") and 𝑅-($!"#-! were created and tested 

independently and then combined and tested.  



   
 

   
 

Exposure Risk General Model:  
 The likelihood that one or multiple carriers of the virus are present in a population of n 

people can be modeled using this equation, where p is the probability that a randomly selected 

individual in the venue’s population is a carrier and n is the venue’s population: 

𝑅)*+(%,") = 1 − (1 − 𝑝)$ 

 The model works by first predicting probability that each of the n individuals are not 

infected by raising 1 − 𝑝  to the power of n ((1 − 𝑝)$	), which is then subtracted from one to 

the get the final exposure risk (Chande et al, 2020).  

Circulating Case Estimate: 
 To calculate the probability (p) that a randomly selected individual in the venue’s 

population (n) is a carrier, the circulating case estimate and the total population of the county is 

needed because p is simply the circulating cases divided by the total population.  

 The circulating case estimate is calculated by summing all of the new cases from the 

previous 10 days and then multiplying it by the ascertainment bias. New cases are summed 

from 10 days prior to follow CDC guidelines of infectiousness (Chande et al., 2020). The new 

cases are then multiplied by the ascertainment bias to account for unreported cases. An 

ascertainment bias of 10 was chosen because only 1/10 of cases are reported in reality (1). In 

the future, ascertainment bias may lower as reporting gets more accurate.  

Exposure Risk Protype #1: 

𝑅)*+(%,") = 1 −
(𝑝 − 𝐴𝑏 ∗ ∑ [𝑁𝑐/01/])23

1/43 !

$
6"

𝑝!
$
6"

 

 Based off of the general model, this was the first model created to predict 𝑅)*+(%,").  

This prototype aimed to incorporate circulating case estimate to calculate the cases in a 



   
 

   
 

community, which was done through the 𝐴𝑏 ∗ ∑ [𝑁𝑐/01/]23
1/43 	section of the model, where 𝐴𝑏 

is the ascertainment bias that is multiplied to sum all of the new cases 𝑁𝑐 at day number 𝑑 for 

10 days. The new cases c for each day was obtained from the New York Times COVID-19 

Database. Another addition this model made was incorporating population density $
6"

, with n 

being the venue’s currently population and Ar being the venue’s area in meters squared. p is 

the 2010 census population of county in which the venue is located. Population data was 

acquired from the US 2010 census.  

Exposure Risk Model Prototype #2:  

𝑅)*+(%,")	4	1 − 4
𝑝 − 𝐴𝑏 ∗ [𝑇𝑐/ − 𝑇𝑐/023]

𝑝 	6
$

	 

 In the second iteration of the model, efficiency was prioritized. All unnecessary 

calculation - factorials and summation of new cases - were eliminated. Population density ( $
6"

) 

was implemented incorrectly in the first prototype and thus eliminated as well; it was factored 

back into the model in the 𝑅-($!"#-!  aspect of the model. Since the New York Times COVID-19 

data bases also provided total cases (𝑇𝑐/) at specific day d, total cases data was used instead of 

new cases data to find the total number of new cases between the current day (d) and the day 

10 days later (d-10). All other factors are kept the same.  

Exposure Risk Model Prototype #3 (Final Model):  
 	

𝑅)*+(%,")	4	1 − 41 −
𝐴𝑏 ∗ [𝑇𝑐/ − 𝑇𝑐/023] ∗ 0. 2

𝑝 	6
$

	 

 The third and final iteration of the model is more efficient since the population p of the 

county does not need to be retrieved twice from the data base. Circulating case estimate was 

updated to factor in a finding that 20% of cases are asymptomatic, meaning that only about 

80% of the population quarantines since the other 20% is not aware they are a carrier. This 



   
 

   
 

iteration obtained its data from the COVID-19 Data Repository by the Center for Systems 

Science and Engineering (CSSE) at Johns Hopkins University. 

Contract Risk Model General Model: 
𝑅-($!"#-! = 1 − (1 − 𝑃896)(;!"#$%&!	×	$) 

 Contract risk model predicts the probability that an individual will contract the virus 

after interacting with a COVID-19 carrier. Created by Lelieveld, J., Helleis, F., Borrmann, S., 

Cheng, Y., Drewnick, F., Haug, G., Klimach, T., Sciare, J., Su, H., & Pöschl, U. (2020), the model 

factors in three types of values: individual related, virus related, and venue related factors. To 

calculate the contract risk of any virus the infective dose D50, which is the number of virus RNA 

copies needed to infect 50% of subjects, is needed. D50 of COVID-19 was not available since it 

requires human testing, so it was calculated using data from Cov-SARS-1. The D50 for Cov-SARS-

2 was estimated to be 316 virus RNA copies (Lelieveld et al. 2020). Then, D50 is used to 

calculate the probability that one virus RNA copy (𝑃896) can infect a subject, which was 

calculated to be 0.22%. Then, the model uses 𝐷)+'%(/), the viral RNA copies inhaled by an 

individual, and the number to individuals at the venue (n) to calculate the final contract risk 

(Lelieveld et al. 2020). 𝐷)+'%(/) is calculated by using factors such as the volume of the 

establishment, efficiency of masks, number of hours during the visit, concentration of viral RNA 

copies, the number of aerosols emitted during speaking and breathing, room ventilation, and 

lifespan of the virus in an aerosol (Appendix #1). 

 
 
 
 
 



   
 

   
 

Transmission Risk Model: 
 

𝑅!"#$%&'%%'($ =	
<1 − =1 − 𝐴𝑏 ∗ [𝑇𝑐/ − 𝑇𝑐/023] ∗ 0. 2𝑝 	>

$
? 	× 	 @1 − (1 − 𝑃896)>;!"#$%&!	×	$?A		

𝐼'&&,$'!.
 

  
After combining 𝑅)*+(%,")		and 𝑅-($!"#-!, the final 𝑅!"#$%&'%%'($ model predicts the 

probability that an individual would be transmitted the virus based on the county’s estimated 

2019 population (p); circulating case estimate (𝐴𝑏 ∗ [𝑇𝑐/ − 𝑇𝑐/023]), where Ab is the 

ascertainment bias, 𝑇𝑐/  is the total cases in the county on the current day, and 𝑇𝑐/023 is the 

total number of cases 10 days prior; COVID-19’s 𝑃896, the probability that one viral RNA copy 

can infect an individual; 𝐷)+'%(/), the amount of viral RNA copies and individual will inhale 

during their visit; and n, the total number of people at the establishment.  

Testing the Models: 
Exposure Risk 
 The exposure risk model was testing by generating 200 random counties (appendix #2) 

using the Barnum Python Module. The exposure risk for a venue with 50 individuals was 

calculated for all of these counties for 18 different dates (list dates).  The exposure risks for 

each date were plotted against the number of new cases per 1000 people for a date two weeks 

later. Using the Matplotlib Module, for each date, a “New Cases per 1000 people vs Exposure 

Risk Two Weeks Prior” scatter plot was created. The Spearman’s Rank Correlation statistical 

test was used to correlate these two variables and was calculated using the scipy.stats module’s 

“spearmanr” function. It outputted the Spearman Correlation ratio as well as a P-value. To find 

a general trend, the Spearman Correlation ratios and p-values were arithmetically averaged.  



   
 

   
 

Contract Risk 
 The contract risk model was scenario tested to examine its viability before being used in 

the in the transmission risk model. Four scenarios were created, each one in a different venue – 

a high school classroom, house party, grocery store, and small office. These settings were 

chosen to test a wide range of factors (table 2). The contract risk was calculated for three 

different types of mask wearing habits – no mask, normal mask, and surgical mask. This 

information was stored on an Excel file.  

Table 1. Characteristics of Venue #1 
Venue #1: High School Classroom  

Room Properties Event Properties 
Ventilation: 
(0.35 = no vent,  
2 = ventilation once,  
6 = public space)  

2  Duration (hours):  7 

Area:  60 meters squared Population: 25 
Height: 3 meters Fraction of Speaking 

(% of time): 
50% 

Table 2. Characteristics of Venue #2 
Venue #2: House Party  

Room Properties Event Properties 
Ventilation: 0.35 Duration (hours):  4  
Area:  60 meters squared Population: 10 
Height: 3 meters Fraction of Speaking: 80% 

Table 3. Characteristics of Venue #3 
Venue #3: Large Grocery Store  

Room Properties Event Properties 
Ventilation: 6 Duration (hours):  1 
Area:  12929 meters squared Population: 120 
Height: 5 meters Fraction of Speaking: 10% 

Table 4. Characteristics of Venue #4 
Venue #4: Small Office  

Room Properties Event Properties 
Ventilation: 2 Duration (hours):  15 
Area:  100 Population: 20 
Height: 4 Fraction of Speaking: 60% 

 



   
 

   
 

Transmission Risk 
 Transmission risk model was tested on the same 4 venues with three different levels of 

mask usage, but the transmission risk was calculated for scenarios where venues were located 

in three different counties. The counties Allegheny, Pennsylvania; Wyandot, Ohio; and Los 

Angeles County, California were grouped into low, medium, and high exposure risk, 

respectively. A hypothesis was made about which model would have the highest transmission 

risk based on venue factors (Tables 1 to Table 4) and the county exposure risk group. 

Results:  
Exposure Risk: 
 The exposure risk model averaged a spearman correlation of 0.81, which puts the 

correlation between the exposure risk prediction and new cases two weeks after in the “very 

strong” category. The average p-value of the statistical test was 1.57E-24. 

Table 5: Spearman Correlation and P-Values for Each Date 

Test # 
Initial 
Date 

Spearman 
Correlation P-value 

1 5/15/20 0.81480425 3.03E-44 
2 6/15/20 7.53E-01 1.61E-35 
3 7/15/20 0.84837689 1.18E-54 
4 8/15/20 0.88068476 3.25E-64 
5 9/15/20 0.81446534 8.54E-47 
6 10/15/20 0.80981234 1.21E-45 
7 11/15/20 0.80601881 3.80E-45 
8 12/15/20 0.63733672 2.82E-23 
9 1/15/21 0.81750437 2.08E-47 

10 5/30/20 0.88634784 4.23E-63 
11 6/30/20 0.79395872 7.67E-42 
12 7/30/20 0.91893914 2.70E-78 
13 8/30/20 0.84222822 1.60E-51 
14 9/30/20 0.78671714 1.87E-41 
15 10/30/20 0.83801217 7.11E-52 
16 11/30/20 0.83859006 5.21E-52 
17 12/30/20 0.66992323 2.28E-26 



   
 

   
 

18 1/27/21 0.83283032 1.09E-50 
 

 Figure 1:  This chart visualized the exposure risk model’s Spearman Rank Correlation 
ratio for each month from 5/15/2020 to 1/15/2021. 

 

Figure 2: Exposure Risk for 05/01/2020 vs new cases from 
5/01/2020 to 5/15/2020.  
 

 

Figure 3: Exposure Risk for 09/01/2020 vs new cases from 
09/01/2020 to 09/15/2020.  
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Figure 4: Exposure Risk for 10/01/2020 vs new cases from 
10/01/2020 to 10/15/2020.  

Figure 5: Exposure Risk for 11/01/2020 vs new cases from 
11/01/2020 to 11/15/2020.  

Figure 6: Exposure Risk for 12/01/2020 vs new cases from 
12/01/2020 to 12/15/2020.  

Figure 7: Exposure Risk for 01/01/2021 vs new cases from 
01/01/2021 to 01/15/2021.  

 
 
 
 
 
 



   
 

   
 

Transmission Risk Testing:  
Table 6:  Sample Exposure risk values based on venue population for low, mid, and high-risk 
counties used for transmission risk calculation in table 8.  
Venue 1: Exposure risk 
Low Exposure: Allegheny, Pennsylvania 0.208094786 
Mid Exposure: Wyandot, Ohia 0.332207167 
High Exposure: Los Angeles County, California 0.487816321 
  
Venue 2:  
Low Exposure: Allegheny, Pennsylvania 0.089102981 
Mid Exposure: Wyandot, Ohia 0.149142754 
High Exposure: Los Angeles County, California 0.234808223 
  
Venue 3:  
Low Exposure: Allegheny, Pennsylvania 0.673689257 
Mid Exposure: Wyandot, Ohia 0.856027211 
High Exposure: Los Angeles County, California 0.959705708 

  
Venue 4:  
Low Exposure: Allegheny, Pennsylvania 0.17026662 
Mid Exposure: Wyandot, Ohia 0.276041947 
High Exposure: Los Angeles County, California 0.414481545 

 
Table 7:  Transmission risk values based on mask efficiency and county exposure risk  

Venue 1: High School Class   
Conditions No Mask normal Mask surgical Mask 
low Exposure 0.198327055 0.190085886 0.163010267 
mid exposure 0.316613743 0.303457356 0.260233233 
high exposure 0.464918782 0.445599812 0.382129078 

    
Venue 2: House - Party   
Conditions No Mask normal Mask surgical Mask 
low Exposure  0.084079258 0.08017406 0.067945743 
mid exposure 0.140733924 0.134197307 0.113729252 
high exposure 0.22156948 0.211278324 0.17905371 

    
Venue 3: Grocery Store   
Conditions No Mask normal Mask surgical Mask 
low Exposure 6.23721E-05 5.34618E-05 2.67309E-05 
mid exposure 0.0001044 8.94857E-05 4.47428E-05 



   
 

   
 

high exposure 0.000164366 0.000140885 7.04425E-05 

    
Venue 4: Office   
Conditions No Mask normal Mask surgical Mask 
low Exposure 0.137485759 0.124692091 0.095557274 
mid exposure 0.222896517 0.202154994 0.154920653 
high exposure 0.334682803 0.303539064 0.232615919 

 

Figure 8: Transmission Risk for four venues - High School Classroom, House Party, Grocery 
Store, and Office - in high, mid, and low incidence counties and different mask situations. 
Discussion: 

 The tests conducted on these models were done to shows that they are more accurate 

than models already in the market and they can provide their respective risk predictions 

accurately.  
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Exposure Risk 

 Firstly, the exposure risk model testing gave an average Spearman Rank Correlation of 

0.81, which means that the model had a “very strong” positive correlation according to the 

statistical test. This shows that the Exposure Risk Model’s risk predictions are strongly 

correlated to the number of new case 2 weeks later. In addition, since the model was tested on 

a random set of 200 counties, it means these results would hold true for most of the United 

States. Because of the strong correlation, this model serves as an accurate model to use in the 

larger Transmission Risk Model.  

 After an analysis done between the dates and the Spearman Rank Correlation ratio it 

was found that the exposure risk model had a weaker correlation (about 0.2 lower ratio) for 

both dates in December (Figure 1). This can most likely be attributed to the unpredictable 

manner that new cases grew after period of vacation (Figure 6), where many individuals were in 

contact with outsiders. This suggests that the exposure risk model is not well suited to handle 

unexpected jumps in cases. Instead, as seen by the steady correlation between months seven 

to eleven, the model is more accurate during longer periods of fairly steady increase.  

Some errors could have happened during the testing of the exposure risk model. Since 

this model was tested using random zip-codes generated through the Barnum Python module. 

One of the 200 counties may have been duplicates. Although this is extremely unlikely since 

there are 3006 counties in the US, it is still a possibility (source 2). This would impact how well 

the sample counties were analogous to all of the United States, which could provide biased 

results for a certain type of counties.  



   
 

   
 

Finally, this model prove to be more accurate than other exposure risk models 

developed and tested using similar methods. A model created by Sun et all (2020), averaged a 

Spearman Correlation of 0.6, while this paper’s exposure risk modeled averaged a ratio of 0.81. 

Both were tested using the similar methods – by correlating exposure risk to new cases two 

weeks later. This paper’s model performed better because, when calculating circulating cases in 

a community, it found new cases between two weeks prior and the current date, while the 

other exposure risk model found circulating cases by summing new cases for ten days. In 

addition, my model’s circulating case estimate factored in unreported cases and asymptomatic 

cases through the Ascertainment Bias and multiplication by 0.2. These factors made  my 

probabilistic model more realistic and allowed to provide a stronger exposure risk prediction.  

 Since the hypothesis was that the there would a positive correlation between new cases 

and the model’s exposure risk prediction, the hypothesis was confirmed by the average 

Spearman Rank Correlation of 0.81. The 18 tests conducted for the 18 different have a mean p-

value of 1.57E-24, confirming that the data was significant.  

 Transmission Risk: 
 The transmission risk model provided sensible results relative to the other hypothetical 

venues, mask scenarios, and county types. There were two hypotheses for this test. The first 

one was that the transmission risk prediction for each combination of mask efficiency and 

country exposure would go in this order for each venue: Surgical Mask + Low Exposure County 

< Surgical Mask + Mid Exposure County < Surgical Mask + High Exposure County < Normal Mask 

+ Low Exposure County < Normal Mask + Mid Exposure County < Normal Mask + High Exposure 

County < No Mask + Low Exposure < No Mask + Mid Exposure < No Mask + High Exposure. This 

hypothesis was created based on the simple fact that High Exposure Risk counties present a 



   
 

   
 

high risk of coming in contact with a carrier and more efficient face masks provided better 

protection against transmission of the virus.  

 Based off of the results in Figure 8, the model’s results were exactly the same as the 

hypothesis. This means that the model’s transmission risk prediction make sense in context 

with the other venues; however, this test does show that the model’s probabilities are 

accurate. It only shows that that, relative to other venues, the probabilities (risk) make sense. 

To test if the actual risk prediction is accurate, on-site testing would need to be done in an 

actual community and real venue. Because of that, the transmission the risk prediction 

outputted by the model should be viewed as score between 1 and 100 instead of a probability. 

The score is helpful to compare different venues with each other. 

 The second hypothesis was that the average transmission risk prediction for each venue 

would be in this order: Grocery Store (Venue 3) < House Party (Venue 4) < High School (Venue 

1) < Small Office (Venue 2). I hypothesized that the estimate would be lowest for the grocery 

store because of its lowest fraction of speaking (Table 3), its low event duration (Table 3), and 

most importantly its large volume compared to its population (Table 3). Since it has a low 

fraction of speaking and low event duration, an individual would have less instances and less 

time to inhale doses of the virus, leading to a lower transmission risk. Also, the larger volume of 

the venue violates he assumption of homogenous mixture of air, which is what Lelieveld et al. 

(2020) had assumed when creating the contract risk model used in my transmission risk model.  

 Overall, the model made the predictions similar to the hypothesis; however, the high 

school classroom (Venue #1) achieved the highest average transmission risk, instead of the 

hypothesized office (Figure 8). This is because the office actually had a larger volume and a 



   
 

   
 

lower amount of people inside the venue, so the result makes sense. In accordance with the 

hypothesis, this venue with the lowest score was the grocery store, mainly because of its lower 

population density and its large room size which violates the assumption made in the contract 

risk model of the homogenous mixture of air. This essentially means that the model cannot 

make accurate prediction for larger venues sizes; a potential solution to combat this would be 

to view the venue as smaller sections, such as rooms or hallways. It would be more accurate to 

get the transmission risk prediction for a specific room in a venue than the whole venue itself. 

For example, a school could be sectioned into different classrooms or a grocery store could be 

sectioned into different aisles.  

 Overall, the sub models (exposure risk and contract risk) and the final combined model 

(transmission risk) proved to accurate predictions for their respective risks. The discussion 

section only discussed the exposure and contract risk, since those were the models created by 

the paper. Contract risk was adapted from Lelieveld et al (2020). This model was implemented 

into a web-app that allowed individuals to input their zip code, personal factors, event factors, 

and venue factors to be presented with the transmission risk of attending their venue. Using 

these models along with the web-app individuals can assess the risk associated with visiting an 

establishment and take the right decision for their safety, hindering the virus to spread.    
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